

Session 2: Basis Sets

- Two of the major methods (*ab initio* and DFT) require some understanding of basis sets and basis functions
- This session describes the essentials of basis sets:
 - What they are
 - How they are constructed
 - How they are used
 - Significance in choice

Running a Calculation

- In performing *ab initio* and DFT computational chemistry calculations, the chemist has to make several decisions of input to the code:
 - The molecular geometry (and spin state)
 - The basis set used to determine the wavefunction
 - The properties to be calculated
 - The type(s) of calculations and any accompanying assumptions

Running a calculation

- For *ab initio* or DFT calculations, many programs require a basis set choice to be made
 - The basis set is an approximate representation of the atomic orbitals (AOs)
 - The program then calculates molecular orbitals (MOs) using the Linear Combination of Atomic Orbitals (LCAO) approximation

Critical Choices

- Choice of the method (and basis set) used is critical
 - Which method?
 - Molecular Mechanics, *Ab initio*, Semiempirical, or DFT
 - Which approximation?
 - MM2, MM3, HF, AM1, PM3, or B3LYP, etc.
 - Which basis set (if applicable)?
 - Minimal basis set
 - Split-valence
 - Polarized, Diffuse, High Angular Momentum,

Why is Basis Set Choice Critical?

- The basis set needs to be able to approximate the actual wave function sufficiently well to give chemically meaningful results
 - Also needs a reasonable computational "cost"
 - Integrals should be evaluated quickly and accurately
- Trade-offs
 - Choice always involves a balance between accuracy and computational cost
 - More accurate methods using larger basis sets will take more computer time

Theoretical Models

- Goal of computational chemistry is to mathematically represent chemical reality
 - Improving the basis set and the degree of electron correlation improves the ability of the computational model to approach reality
- Ultimate goal is an exact solution of the Schrödinger equation

	Comparison of Some Methods for Accuracy							
	DFT Location??							
		HF	MP2	MP3	MP4	QCISD(T)		Full CI
в	Minimal STO-3G		Electron Correlation →					
A S	Split Valence 3-21G		\backslash					
S	Polarized 6-31G(d)			/				
s	6-311G(d,p)				Ŷ			
E T	Diffuse 6-311+G(d,p)				Ľ	6		
↓	High ang. Momentum 6-311+G(2d,p)							
	6-311++G(3df,3dp)							
	œ	HF Limit						Schrödinger Equation
	CCCE 2008 9							

Possible Basis Functions

1. Hydrogen-like Orbitals

Derived for a one-electron atom

• Not truly accurate for a *many-electron* atom $\Psi(r, \boldsymbol{\theta}, \boldsymbol{\phi}) = R(r) Y_l^m(\boldsymbol{\theta}, \boldsymbol{\phi})$

Form:

R(r) = radial function

- Y_{l}^{m} = spherical harmonic
- + Advantages: Mutually orthogonal
- Disadvantages: Complex form is awkward for calculations: Most atoms of interest > one electron

Possible Basis Functions

- True wavefunction should be antisymmetric to electron interchange - use spin orbitals
 - Antisymmetric linear combination of products of spin orbitals used in an SCF calculation
 - \rightarrow HF-SCF calculation
 - Numerical methods were originally used to solve and find the Hartree-Fock orbitals
- Roothaan: Represent the HF orbitals as linear combinations of a set of known (basis) functions
 - Commonly used set of basis functions for atomic HF calculations is the set of Slater-type orbitals (STOs)

Possible Basis Functions 2. Slater Type Orbitals (STOs)

Normalized form:

- Normalized form.
$$(2m/a)^{n+0.5}$$

$$\boldsymbol{\mu}(r,\boldsymbol{\theta},\boldsymbol{\phi}) = \frac{(\boldsymbol{2}\boldsymbol{\zeta} \mid \boldsymbol{u}_0)}{[(2n)!]^{0.5}} r^{(n-1)} e^{(-\boldsymbol{\zeta}r/\boldsymbol{u}_0)} Y_l^m(\boldsymbol{\theta},\boldsymbol{\phi})$$

where n, m, and l are integers and ζ (orbital exponent) is a variational parameter

- Improve results by using a linear combination of several STOs to represent each HF orbital
- HF-SCF atomic calculations require lots of computation
 - Hartree did this numerically in the 1930's

Slater Type Orbitals

- + Advantages: Have a complete set
 - Radial behavior closely matches hydrogenic orbitals
- Disadvantages:
 - No nodes, as with H-like orbitals
 - Not mutually orthogonal
 - For larger molecules, computer evaluation of the many integrals involved is <u>quite</u> time consuming
 - \rightarrow Need to reduce the computational cost

Possible Basis Functions

- 3. Gaussian Type Orbitals (GTOs) Proposed by S.F. Boys in 1950 GTO form: $g(r, \theta, \phi) = \left[\frac{2^{(2n+1.5)}}{(2n-1)!\sqrt{\pi}}\right]^{0.5} \zeta^{(2n+1)/4} r^{(n-1)} e^{(-\alpha r^2)} Y_l^m(\theta, \phi)$
 - + Advantages: Have a complete set
 - Computer evaluation of integrals <u>much faster</u>
 → Closed integrals; Integrated GTO gives a GTO
 - Disadvantages: Not mutually orthogonal
 - Representation of e- probability is poor near and far away from the nucleus

GTOs

- Linear combinations of GTO's are used to approximate STOs (which are themselves approximations)
 - A single GTO basis function has significant errors when compared to a STO, especially near the nucleus (See previous slide)
 - If several GTOs are combined in a linear combination, the basis function is greatly improved
 - \rightarrow See next slide

Use of GTOs

- Individual GTOs not used as basis functions:
 - Use a normalized linear combination of a few GTOs (called *primitives*), each with different α values to give a "contracted" Gaussian function

$$g_c = \sum c_i g_p$$

where g_c is a contracted gaussian,

 g_p is a primitive gaussian, and c_i is

a contraction coefficient

• A linear combination of these primitives (typically 1-7) is used to approximate the STO

Use of GTOs

- Using contracted GTOs instead of primitive GTOs as the basis set has advantages:
 - Number of variational coefficients to be determined is reduced, which saves a lot of computational time
 - Accuracy is NOT reduced significantly, as long as the contraction coefficients (ci's) are well chosen
- Increasing the number of primitive GTOs used in each contracted Gaussian improves the accuracy
- Different types of basis sets use different numbers and types of GTOs

Minimal Basis Sets

- Jargon Used \rightarrow **STO-NG** (Single ζ)
 - N is the number of primitive GTOs used
 - -Example: STO-3G
 - Three primitive GTOs used per AO
 - Popular starting point for calculations
 - STO-3G basis functions have been developed for most of the elements in the Periodic table
 - →Minimal basis sets do not adequately describe non-spherical (anisotropic) electron distribution in molecules (as in polar covalent bonds)

Split Valence Basis Sets

- Jargon Used \rightarrow **K-LMG** (Double ζ)
 - Differentiate between core and valence electrons
 - Developed to overcome problems of inadequate description of anisotropic electron distributions using minimal basis sets (<u>Size</u> is adjusted)
 - K = number of sp-type inner shell primitive GTOs
 - L = number of inner valence s- and p-type primitive GTOs
 - M = number of outer valence s- and p-type primitive GTOs

Split Valence Basis Sets

• Examples:

- **3-21G** (Used as the semiempirical basis set)
- **Three** primitives for the inner shell (STO-**3**G); each valence orbital is constructed with **two** sizes of basis function (*Two* GTOs for contracted valence orbitals; *One* GTO for extended valence orbitals)

6-311G

STO-**6**G for inner shell; **Three** sizes of basis function for each valence orbital (*Three* GTOs for contracted valence orbitals, and *two different sizes* of GTO for extended valence orbitals)

Polarized Basis Sets

- Jargon Used \rightarrow 6-31G(d) or 6-31G* (older)
- Also have 6-31G(d,p) or 6-31G**
 - \rightarrow (d) or * type
 - d-type functions added to atoms with $Z\!>\!2$
 - f-type functions added to transition metals
 - \rightarrow (d,p) or ** type
 - p-type functions added to H atoms
 - d-type functions added to atoms with $Z\!>\!2$
 - f-type functions added to transition metals
 - 6-31G(d) is another popular basis set choice

Polarized Basis Sets

- In molecule formation, AOs become distorted in shape (polarization)
 - Orbitals are influenced by other nuclei
 - Polarization accounts for these influences which distort the <u>orbital shape</u>

Diffuse Basis Sets

- Jargon Used \rightarrow 6-31+G(d) or 6-31++G(d) 6-31+G(d)
 - -6-31G(d) basis set with an additional larger p-function for atoms with Z > 2

6-31++G(d)

- -6-31+G(d) basis set with an additional larger s-function for H atoms
- Diffuse basis sets are useful for describing anions, molecules with lone pairs, excited states, and transition states (loosely held e⁻)

Basis Set Progression

Increasing number of GTOs Used:
 Minimal < Split Valence < Polarized < Diffuse

Get an increasingly good approximation to the actual wave function

- The number of integrals increases as N⁴ where N is the number of basis functions
- During the minimization process, the orbital exponents are adjusted to define a new basis set to start another iteration

 \rightarrow Computational cost has to be considered

(Comparison of Some Methods for Accuracy							
	DFT Location??							
		HF	MP2	MP3	MP4	QCISD(T)		Full CI
в	Minimal STO-3G	Į	Electron Correlation →					
A S	Split Valence 3-21G		\setminus					
I S	Polarized 6-31G(d) ~ DZVP							
s	6-311G(d,p) ~ TZVP				c			
E T	Diffuse 6-311+G(d,p)				X			
Ļ	High ang. Momentum 6-311+G(2d,p)							
	6-311++G(3df,3dp)							
							\land	
	œ	HF Limit						Schrödinger Equation

Basis Set Choice and Expense

axial-methylcyclohexane on SGI Indigo2 (*Spartan* cpu time in sec.)

Method/Basis Set	<u>s.p.</u>	<u>opt.</u>
AM1/STO-3G	~1	10
HF/STO-3G	72	983
HF/ 3-21G(d)	193	2214
HF/ 6-31G(d,p)	2632	34655 (9.6 h)

• As larger basis sets are used, the energy decreases (Variational Principle)

Common Basis Sets				
Brief Description of Standard Basis Sets				
Basis Set	Description			
STO-3G	Minimal basis; qualitative results - large systems			
3-21G	Double ζ ; more accurate results on large systems			
6-31G(d)	Moderate set; Common use for medium systems			
6-31G(d,p)	Used where H is site of interest; More accurate			
6-31+G(d)	Used with anions, excited states, lone pairs, etc.			
6-31+G(d,p)	Used with anions, etc., where H is site of interest			
6-311++G(d,p)	Good for final, accurate energies, but expensive			
Many other sets are in use. Existing sets can be modified				

Optimization of a Basis Set

- Variational Principle: Energy values are bounded from below
 - The lower the calculated energy, the better
 - Procedure:
 - Vary the constants and exponents that describe the Gaussian functions *sequentially* until the lowest energy is obtained
 - \rightarrow Such a basis set may only apply to that individual molecule, however

Lab: Gaussian Orbitals

- **Question:** How are Gaussian orbitals used to approximate a Slater Type Orbital?
- **Importance:** Basis sets are approximations based on mathematical use of two or more Gaussian functions
- Goal: Visualize an "STO-3G" basis set what does the resultant function look like?
- Computational Tool: Spreadsheet
- Refer to Basis Set Case Study handout for detailed instructions